Dynamics and order–disorder transitions in bidisperse diblock copolymer blends

نویسندگان

  • Yueqiang Wang
  • Xuan Li
  • Ping Tang
  • Yuliang Yang
چکیده

We employ the dynamic extension of self-consistent field theory (DSCFT) to study dynamics and order–disorder transitions (ODT) in AB diblock copolymer binary mixtures of two different monodisperse chain lengths by imitating the dynamic storage modulus G0 corresponding to any given morphology in the oscillatory shear measurements. The different polydispersity index (PDI) is introduced by binary blending AB diblock copolymers with variations in chain lengths and chain number fractions. The simulation results show that the increase of polydispersity in the minority or symmetric block introduces a decrease in the segregation strength at the ODT, (wN)ODT, whereas the increase of polydispersity in the majority block results in a decrease, then increase and final decrease again in (wN)ODT. To the best of our knowledge, our DSCFT simulations, for the first time, predict an increase in (wN)ODT with the PDI in the majority block, which produces the experimental results. The simulations by previous SCFT, which generally speaking, is capable of describing equilibrium morphologies, however, contradict the experimental data. The polydispersity acquired by properly tuning the chain lengths and number fractions of binary diblock copolymer blends should be a convenient and efficient way to control the microphase separation strength at the ODT. & 2010 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulating block copolymer phases via selective homopolymers.

The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer is immiscible with the B-blocks but strongly attractive with the A-blocks. The effect of homopolymer content on the order-order phase transitions is analyzed. I...

متن کامل

Micelle shape transitions in block copolymer/homopolymer blends: comparison of self-consistent field theory with experiment.

Diblock copolymers blended with homopolymer may self-assemble into spherical, cylindrical, or lamellar aggregates. Transitions between these structures may be driven by varying the homopolymer diblock molecular weight or composition. Using self-consistent field theory (SCFT), we reproduce these effects. Our results are compared to x-ray scattering and transmission electron microscopy measuremen...

متن کامل

Diblock Copolymer / Homopolymer Blends: Derivation of a Density Functional Theory

Melts of diblock copolymer / homopolymer blends exhibit multiscale phase separation: (i) macrophase separation into homopolymerand copolymer-rich macrodomains followed by (ii) microphase separation into Aand B-rich microdomains within the copolymer-rich macrodomains (cf. [16, 17, 26]). Following our previous derivation in [6], we derive a density functional theory for blends. This theory has be...

متن کامل

Lifshitz points in blends of AB and BC diblock copolymers

– We consider microand macro-phase separation in blends of AB and BC flexible diblock copolymers. We show that, depending on architecture, a number of phase diagram topologies are possible. Microphase separation or macrophase separation can occur, and there are a variety of possible Lifshitz points. Because of the rich parameter space, Lifshitz points of multiple order are possible. We demonstr...

متن کامل

Architecture-Induced Phase Immiscibility in a Diblock/ Multiblock Copolymer Blend

Ordered diblock copolymer blends have recently become the subject of tremendous research interest since they can be used to elucidate the intramicrodomain segregation of blocks differing in length, as well as to identify the molecular and blend parameters yielding phase immiscibility. In this work, we explore the influence of molecular architecture on block copolymer blend miscibility by examin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011